题目内容

【题目】已知:二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论中:①abc>0;②2a+b<0;③a+b<m(am+b)(m≠1的实数);④(a+c)2<b2;⑤a>1.其中正确的项是(
A.①⑤
B.①②⑤
C.②⑤
D.①③④

【答案】A
【解析】解:①∵抛物线的开口向上,∴a>0, ∵与y轴的交点为在y轴的负半轴上,∴c<0,
∵对称轴为x= >0,
∴a、b异号,即b<0,
又∵c<0,∴abc>0,
故本选项正确;
②∵对称轴为x= >0,a>0,
<1,
∴﹣b<2a,
∴2a+b>0;
故本选项错误;
③当x=1时,y1=a+b+c;
当x=m时,y2=m(am+b)+c,当m>1,y2>y1;当m<1,y2<y1 , 所以不能确定;
故本选项错误;
④当x=1时,a+b+c=0;
当x=﹣1时,a﹣b+c>0;
∴(a+b+c)(a﹣b+c)=0,即(a+c)2﹣b2=0,
∴(a+c)2=b2
故本选项错误;
⑤当x=﹣1时,a﹣b+c=2;
当x=1时,a+b+c=0,
∴a+c=1,
∴a=1+(﹣c)>1,即a>1;
故本选项正确;
综上所述,正确的是①⑤.
故选A.
【考点精析】通过灵活运用二次函数图象以及系数a、b、c的关系,掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c)即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网