题目内容

【题目】2011年3月11日13时46分日本发生了9.0级大地震,伴随着就是海啸.山坡上有一颗与水平面垂直的大树,海啸过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,测得树干的倾斜角为∠BAC=38°,大树被折断部分和坡面的角∠ADC=60°,AD=4米.

(1)求∠DAC的度数;
(2)求这棵大树折断前高是多少米?(注:结果精确到个位)(参考数据:

【答案】
(1)

解:延长BA交EF于一点G,则∠DAC=180°﹣∠BAC﹣∠GAE=180°﹣38°﹣(90°﹣23°)=75°;


(2)

解:过点A作CD的垂线,设垂足为H,

则Rt△ADH中,

∵∠ADC=60°,∠AHD=90°,∴∠DAH=30°,

∵AD=4,

∴DH=2,AH=

Rt△ACH中,

∵∠CAH=∠CAD﹣∠DAH=75°﹣30°=45°,

∴∠C=45°,

故CH=AH= ,AC=

故树高 + +2≈10米.


【解析】(1)通过延长BA交EF于一点G,则∠CAD=180°﹣∠BAC﹣∠EAG即可求得;(2)作AH⊥CD于H点,先求得AH的长,然后再求得AC的长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网