题目内容
【题目】将一副三角板中的两块直角三角尺的直角顶点C按如图所示的方式叠放在一起(其中,,;).
(1)①若,则的度数为_____________;
②若,则的度数为_____________.
(2)由(1)猜想与的数量关系,并说明理由.
(3)当且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请写出角度所有可能的值(不必说明理由);若不存在,请说明理由.
【答案】(1)①;②;(2),理由详见解析;(3)∠ACE=45°或30°或120°或135°或165°
【解析】
(1)①先求出∠ACE,即可求出∠ACB;
②先求出∠ACE,即可求出∠DCE;
(2)根据题意可得,,从而求出与的数量关系;
(3)根据平行线的判定定理和边的平行关系分类讨论,然后画出对应的图形即可得出结论.
解:(1)①∵,∠ACD=∠BCE=90°
∴∠ACE=∠ACD-∠DCE=45°
∴∠ACB=∠ACE+∠BCE=135°
故答案为:.
②∵,∠ACD=∠BCE=90°
∴∠ACE=∠ACB-∠BCE=50°
∴∠DCE=∠ACD-∠ACE =40°
故答案为:.
(2).理由如下
∵,,
∴.
∵,,
∴
∴.
(3)①当时,
∵
∴
∴,
②当时,设CE与AD交于点F,如下图所示
∵∠A=60°,∠BCE=90°
∴∠AFC=180°-∠ACE-∠A=90°
∴∠AFC=∠BCE
∴.
③当时,如下图所示
∵∠ACD=90°,∠D=30°
∴∠DCE=∠ACE-∠ACD=30°
∴∠DCE=∠D
∴.
④当时,如下图所示
∵∠ACD=90°,∠E=45°
∴∠DCE=∠ACE-∠ACD=45°
∴∠DCE=∠E
∴.
⑤当时,过点C作CG∥AD,如下图所示
∴∠D=∠DCG=30°
∵∠ACD=90°,∠E=45°
∴∠GCE=∠ACE-∠ACD-∠DCG=45°
∴∠E=∠GCE
∴BE∥CG
∴.
综上所述:∠ACE=45°或30°或120°或135°或165°.