题目内容
【题目】如图,在△OBC中,边BC的垂直平分线交∠BOC的平分线于点D,连接DB,DC,过点D作DF⊥OC于点F.
(1)若∠BOC=60°,求∠BDC的度数;
(2)若∠BOC=,则∠BDC= ;(直接写出结果)
(3)直接写出OB,OC,OF之间的数量关系.
【答案】(1)120°;(2)180°-α;(3)OB+OC=2OF
【解析】
(1)首先过点D作DE⊥OB于E,易证得△DEB≌△DFC(HL),即可得∠BDC=∠EDF,又由∠EOF+∠EDF=180゜,即可求得答案;
(2)由(1),可求得∠BDC的度数;
(3) OB+OC=OE+OF=2OF
解:(1)过点D作DE⊥OB,交OB延长线于点E,DF⊥OC于F,
∵OD是∠BOC的平分线,
∴DE=DF,
∵DP是BC的垂直平分线,
∴BD=CD,
在Rt△DEB和Rt△DFC中,
∴△DEB≌△DFC(HL)
∴∠BDE=∠CDF,
∴∠BDC=∠EDF,
∵∠EOF+∠EDF=180゜,
∵∠BOC=60゜,
∴∠BDC=∠EDF=120゜.
(2)∵∠EOF+∠EDF=180゜,
∵∠BOC=α,
∴∠BDC=∠EDF=180゜-α.
故答案为:180゜-α.
(3)由(1)知OB+OC=OE+OF=2OF
练习册系列答案
相关题目
【题目】某班男同学身高情况如下表,则其中数据167cm( )
身高(cm) | 170 | 169 | 168 | 167 | 166 | 165 | 164 | 163 |
人数(人) | 1 | 2 | 5 | 8 | 6 | 3 | 3 | 2 |
A.是平均数B.是众数但不是中位数.
C.是中位数但不是众数D.是众数也是中位数