题目内容

【题目】如图,在平面直角坐标系中,∠ACB90°OC2BOAC6,点B的坐标为(10),抛物线y=﹣x2+bx+c经过AB两点.

1)求点A的坐标;

2)求抛物线的解析式;

3)点P是直线AB上方抛物线上的一点,过点PPD垂直x轴于点D,交线段AB于点E,使PEDE

①求点P的坐标;

②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.

【答案】(1)y=﹣x2﹣3x+4;(2)①P(﹣1,6);②M的坐标为:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).

【解析】

(1)先根据已知求点A的坐标,利用待定系数法求二次函数的解析式;

(2)①先得AB的解析式为:y=-2x+2,根据PDx轴,设P(x,-x2-3x+4),则E(x,-2x+2),根据PE=DE,列方程可得P的坐标;

②先设点M的坐标,根据两点距离公式可得AB,AM,BM的长,分三种情况:△ABM为直角三角形时,分别以A、B、M为直角顶点时,利用勾股定理列方程可得点M的坐标.

(1)B(1,0),

OB=1,

OC=2OB=2,

C(﹣2,0),

RtABC中,tanABC=2,

=2,

=2,

AC=6,

A(﹣2,6),

A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:

解得:

∴抛物线的解析式为:y=﹣x2﹣3x+4;

(2)①∵A(﹣2,6),B(1,0),

易得AB的解析式为:y=﹣2x+2,

P(x,﹣x2﹣3x+4),则E(x,﹣2x+2),

PE=DE,

﹣x2﹣3x+4﹣(﹣2x+2)=(﹣2x+2),

x=1(舍)或﹣1,

P(﹣1,6);

②∵M在直线PD上,且P(﹣1,6),

M(﹣1,y),

AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2

BM2=(1+1)2+y2=4+y2

AB2=(1+2)2+62=45,

分三种情况:

i)当∠AMB=90°时,有AM2+BM2=AB2

1+(y﹣6)2+4+y2=45,

解得:y=3

M(﹣1,3+)或(﹣1,3﹣);

ii)当∠ABM=90°时,有AB2+BM2=AM2

45+4+y2=1+(y﹣6)2,y=﹣1,

M(﹣1,﹣1),

iii)当∠BAM=90°时,有AM2+AB2=BM2

1+(y﹣6)2+45=4+y2,y=

M(﹣1,);

综上所述,点M的坐标为:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网