题目内容
【题目】如图,在平面直角坐标系xOy中,反比例函数y=﹣在第二象限的图象上有一点A,过点A作AB⊥x轴于点B,则S△AOB=_____.
【答案】2
【解析】
设出A的坐标为(a,b),根据A为第二象限的点,得到a小于0,b大于0,进而表示出AB及OB的长,再由A为反比例函数图象上,将A坐标代入反比例函数解析式中,得到-ab=4,最后由三角形AOB为直角三角形,利用两直角边乘积的一半表示出三角形AOB的面积,将-ab=4代入,即可求出三角形AOB的面积.
解:设A的坐标为(a,b)(a<0,b>0),
则OB=-a,AB=b,
又∵A在反比例函数y=-图象上,
∴将x=a,y=b代入反比例函数解析式得:b=- ,即-ab=4,
又∵△AOB为直角三角形,
∴S△AOB=OBAB=-ab=2.
故答案为:2.
练习册系列答案
相关题目
【题目】行驶中的汽车,在刹车后由于惯性的原因,还要继续向前滑行一段距离才能停住,这段距离称为“刹车距离”.为了测定某种型号汽车的刹车性能,对这种汽车的刹车距离进行测试,测得的数据如下表:
刹车时车速(千米/时) | 0 | 5 | 10 | 15 | 20 | 25 | 30 |
刹车距离(米) | 0 | 0.1 | 0.3 | 0.6 | 1 | 1.6 | 2.1 |
(1)在如图所示的直角坐标系中,以刹车时车速为横坐标,以刹车距离为纵坐标,描出这些数据所表示的点,并用平滑的曲线连结这些点,得到某函数的大致图象;
(2)测量必然存在误差,通过观察图象估计函数的类型,求出一个大致满足这些数据的函数表达式;
(3)一辆该型号汽车在高速公路上发生交通事故,现场测得刹车距离约为40米,已知这条高速公路限速100千米/时,请根据你确定的函数表达式,通过计算判断在事故发生时,汽车是否超速行驶.