题目内容

【题目】图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=

如果图中的圆圈共有11层,请问:自上往下,在每个圆圈中按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层中间这个圆圈中的数是;自上往下,在每个圆圈中按图4的方式填上一串连续的整数
﹣23,﹣22,﹣21,﹣20,…,则所有圆圈中各数之和为

【答案】61;627
【解析】解:第10层最后一个数为:10(10+1)÷2=55,所以第11层中间一个数为:55+6=61,
图4中所有圆圈的个数为:1+2+3+…+11=11(11+1)÷2=66个数,其中23个负数,1个0,42个正数,
所以图4中所有圆圈中各数之和=﹣23﹣22﹣21…﹣1+0+1+2+…+42=(1+2+3+…+42)﹣(1+2+3+…+23)=42(42+1)÷2﹣23(23+1)÷2=903﹣276=627.
所以答案是:61;627.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网