题目内容
【题目】在ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.
(1)如图1,当EF与AB相交时,若∠EAB=60°,求证:EG=AG+BG;
(2)如图2,当EF与AB相交时,若∠EAB=α(0°<α<90°),请你直接写出线段EG、AG、BG之间的数量关系(用含α的式子表示);
(3)如图3,当EF与CD相交时,且∠EAB=90°,请你写出线段EG、AG、BG之间的数量关系,并证明你的结论.
【答案】(1)证明见解析(2)(3)
【解析】试题分析:(1)首先作交于点H,易证得≌,又由,可证得是等边三角形,继而证得结论;
(2)首先作交于点H,作于点,易证得
≌,又由 易得,继而证得结论;
(3)首先作交于点H,易证得≌,继而可得是等腰直角三角形,则可求得答案.
试题解析:(1)证明:如图,作∠GAH=∠EAB交GE于点H.
∴∠GAB=∠HAE.
∵∠EAB=∠EGB,∠APE=∠BPG,
∴∠ABG=∠AEH.
在△ABG和△AEH中,
∴≌ (ASA).
∴BG=EH,AG=AH.
∴△AGH是等边三角形,
∴AG=HG.
∴EG=AG+BG.
(2)如图,作∠GAH=∠EAB交GE于点H.作AM⊥EG于点M,
∴∠GAB=∠HAE.
∵∠EAB=∠EGB,∠APE=∠BPG,
∴∠ABG=∠AEH.
在△ABG和△AEH中,
∴≌ (ASA).
∴BG=EH,AG=AH.
∵∠GAH=∠EAB=α,
∴EG=GH+BG.
(3)
如图,作∠GAH=∠EAB交GE于点H.
∴∠GAB=∠HAE.
∴∠ABG=∠AEH.
∵又AB=AE,
∴△ABG≌△AEH.
∴BG=EH,AG=AH.
∴△AGH是等腰直角三角形.
练习册系列答案
相关题目