题目内容
【题目】如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.
(1)求证:BD=EC;
(2)若∠E=50°,求∠BAO的大小.
【答案】 (1)见解析(2)40°
【解析】试题分析:(1)根据菱形的对边平行且相等可得AB=CD,AB∥CD,然后证明得到BE=CD,BE∥CD,从而证明四边形BECD是平行四边形,再根据平行四边形的对边相等即可得证;
(2)根据两直线平行,同位角相等求出∠ABO的度数,再根据菱形的对角线互相垂直可得AC⊥BD,然后根据直角三角形两锐角互余计算即可得解.
试题解析:(1)证明:∵菱形ABCD,
∴AB=CD,AB∥CD,
又∵BE=AB,
∴BE=CD,BE∥CD,
∴四边形BECD是平行四边形,
∴BD=EC;
(2)解:∵平行四边形BECD,
∴BD∥CE,
∴∠ABO=∠E=50°,
又∵菱形ABCD,
∴AC丄BD,
∴∠BAO=90°﹣∠ABO=40°.
练习册系列答案
相关题目