题目内容
【题目】如图,垂直平分线段(),点 是线段 延长线上的一点,且,连接,过点作 于点,交的延长线与点.
(1)若 ,则______(用的代数式表示);
(2)线段与线段相等吗?为什么?
(3)若,求的长.
【答案】(1)45°-α;(2)相等,理由见解析;(3)3
【解析】
(1)根据等腰三角形的性质得到∠BAE=∠AEB=45°,根据三角形的内角和即可得到结论;
(2)连接AD,根据线段垂直平分线的性质得到AC=AD,求得∠ADC=∠ACB=α,于是得到AC=DF;
(3)根据已知条件得到BD=CB=3,过F作FH⊥CE交CE的延长线于H,得到△EHF是等腰直角三角形,求得FH=HE,根据全等三角形的性质即可得到结论.
(1)∵AB⊥CD,
∴∠ABE=90°,
∵AB=BE,
∴∠BAE=∠AEB=45°,
∵∠CAB=α,∠CDG=90°-(90°-α)=α=∠EDF.
∴∠AFG=∠AED-∠EDF=45°-α;
故答案为:45°-α;
(2)相等,
证明:连接AD,
∵AB垂直平分线段CD,
∴AC=AD,
∴∠ADC=∠ACB=90°-α,
∴∠DAE=∠ADC-45°=45°-α,
∴∠DAE=∠AFD,
∴AD=DF,
∴AC=DF;
(3)∵CD=6,
∴BD=CB=3,
过F作FH⊥CE交CE的延长线于H,
则△EHF是等腰直角三角形,
∴FH=HE,
∵∠H=∠ABC=90°,∠CAB=∠CDG=∠FDH,AC=AD=DF,
∴△ACB≌△DFH(AAS),
∴FH=CB=3,
∴EF=FH=3.
练习册系列答案
相关题目