题目内容
【题目】如图,点P是四边形ABCD外接圆上任意一点,且不与四边形顶点重合,若AD是⊙O的直径,AB=BC=CD.连接PA,PB,PC,若PA=a,则点A到PB和PC的距离之和AE+AF= .
【答案】a
【解析】解:如图,连接OB、OC.
∵AD是直径,AB=BC=CD,
∴ = = ,
∴∠AOB=∠BOC=∠COD=60°,
∴∠APB= ∠AOB=30°,∠APC= ∠AOC=60°,
在Rt△APE中,∵∠AEP=90°,
∴AE=APsin30°= a,
在Rt△APF中,∵∠AFP=90°,
∴AF=APsin60°= a,
∴AE+AF= a.
所以答案是 a.
【考点精析】关于本题考查的勾股定理的概念和圆周角定理,需要了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半才能得出正确答案.