题目内容

【题目】如图,在RtABC中,已知∠C=90°,∠A=60°AC=3cm,以斜边AB的中点P为旋转中心,把这个三角形按逆时针方向旋转90°得到RtA′B′C′,则旋转前后两个直角三角形重叠部分的面积为______________

【答案】

【解析】

由点P是AB的中点,∠A=60°,AC=3cm可得BP的长,再由逆时针旋转90°,根据旋转的性质和30°直角三角形的三边比值,就可求出BM,MP的长,在RtBMNRtBNG中根据30°直角三角形的三边比值同样可以求出相应线段长,然后利用S阴影部分=进行计算即可.

如图,

∵∠C=90°,A=60°,AC=6,AB=2AC=6,B=30°,

∵点PAB的中点,∴BP=3,

∵△ABC绕点P按逆时针方向旋转得到RtA′B′C′,

P=BP=3,

RtBPM中,∠B=30°,BPM=90°,BM=2PMPM=BM=2

BM=BP-PM=3-

RtBMN中,∠B′=30°,MN=BM=BN=BM+MN=

RtBNG中,BG=2NGBG2=NG2+BN2NG=

S阴影=SBNG-SBMP=

故答案为:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网