题目内容
【题目】(1)如图①,在平行四边形纸片ABCD中,AD=5,SABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE'的位置,拼成四边形AEE'D,判断四边形AEE'D的形状;
(2)如图②,在(1)中的四边形纸片AEE'D中,在EE'上取一点F,使EF=4,剪下△AEF,将它平移至△DE'F'的位置,拼成四边形AFF'D.
①求证:四边形AFF'D是菱形;
②求四边形AFF'D的两条对角线的长.
【答案】(1)矩形;(2)①见解析;②见解析.
【解析】
(1)根据矩形的判定,可得答案;
(2)①根据菱形的判定,可得答案;
②根据勾股定理,可得答案.
(1)纸片ABCD中,AD=5,SABCD=15,
过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,
则四边形AEE′D的形状为矩形.
(2)①证明:∵纸片ABCD中,AD=5,SABCD=15,
过点A作AE⊥BC,垂足为E,
∴AE=3.
如图2:
∵△AEF,将它平移至△DE′F′,
∴AF∥DF′,AF=DF′,
∴四边形AFF′D是平行四边形.
在Rt△AEF中,由勾股定理,得
AF===5,
∴AF=AD=5,
∴四边形AFF′D是菱形;
②连接AF′,DF,如图3:
在Rt△DE′F中E′F=FF′-E′F′=5-4=1,DE′=3,
∴DF==,
在Rt△AEF′中EF′=EF+FF′=4+5=9,AE=3,
∴AF′=.
练习册系列答案
相关题目