题目内容
【题目】一只不透明的袋子中装有1个蓝球和2个红球,这些球除颜色外都相同.
(1)搅匀后从中任意摸出1个球,摸到蓝球的概率为 ;
(2)搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求至少有1次摸到红球的概率.
【答案】(1);(2).
【解析】
(1)由共有3种等可能结果,其中摸到蓝球可能的结果有1种,根据概率公式求解可得;
(2)画树状图列出所有等可能结果,再根据概率公式求解可得.
解:(1)∵袋中共有3个球,
∴共有3种等可能结果,其中摸到蓝球可能的结果有1种.
∴P(摸到蓝球)=,
故答案为:;
(2)将2个红球编号为红球1,红球2,用树状图表示出所有可能出现的结果,
由树状图知,共有9种等可能结果,其中至少有一次摸到红球可能的结果有8种.
∴P(至少有1次摸到红球)=.
【题目】某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.
a. 实心球成绩的频数分布表如下:
分组 | ||||||
频数 | 2 | m | 10 | 6 | 2 | 1 |
b. 实心球成绩在这一组的是:
a7.0 7.0 7.0 7.1 7.1 7.1 7.2 7.2 7.3 7.3
c. 一分钟仰卧起坐成绩如下图所示:
根据以上信息,回答下列问题:
(1) ①表中m的值为__________;
②一分钟仰卧起坐成绩的中位数为__________;
(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.
①请估计全年级女生实心球成绩达到优秀的人数;
②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如下:
女生代码 | A | B | C | D | E | F | G | H |
实心球 | 8.1 | 7.7 | 7.5 | 7.5 | 7.3 | 7.2 | 7.0 | 6.5 |
一分钟仰卧起坐 | * | 42 | 47 | * | 47 | 52 | * | 49 |
其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.
【题目】为在中小学生中普及交通法规常识,倡导安全出行,某市教育局在全市范围内组织七年级学生进行了一次“交规记心间”知识竞赛.为了解市七年级学生的竟赛成绩,随机抽取了若干名学生的竞赛成绩(成绩为整数,满分100分),进行统计后,绘制出如下频数分布表和如图所示的频数分布直方图(频数分布直方图中有一处错误).
组别(单位:分) | 频数 | 频率 |
50.5~60.5 | 20 | 0.1 |
60.5~70.5 | 40 | 0.2 |
70.5~80.5 | 70 | b |
80.5~90.5 | a | 0.3 |
90.5~100.5 | 10 | 0.05 |
请根据图表信息回答下列问题:
(1)在频数分布表中,a= ,b= .
(2)指出频数分布直方图中的错误,并在图上改正;
(3)甲同学说:“我的成绩是此次抽样调查所得数据的中位数”,问:甲同学的成绩应在什么范围?
(4)全市共有5000名七年级学生,若规定成绩在80分以上(不含80分)为优秀,估计这次竞赛中成绩为优秀的学生有多少人?