题目内容

如图,在平面直角坐标系中,A(1,0),B(0,3),以AB为边在第一象限作正方形ABCD,点D在双曲线y=(k≠0)上,将正方形沿x轴负方向平移 m个单位长度后,点C恰好落在双曲线上,则m的值是 (    )

A.2B.3C.D.

A.

解析试题分析:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.

∵A(1,0),B(0,3),
∴OB=3,OA=1.
∵∠BAD=90°,
∴∠BAO+∠DAF=90°,
又∵直角△ABO中,∠BAO+∠OBA=90°,
∴∠DAF=∠OBA,
在△OAB和△FDA中,

∴△OAB≌△FDA(AAS),
同理,△OAB≌△FDA≌△BEC,
∴AF=OB=EC=3,DF=OA=BE=1,
故D的坐标是(4,1),C的坐标是(3,4).代入 得:k=4,
则函数的解析式是:
OE=4,
则C的纵坐标是4,把y=4代入y=得:x=1.即G的坐标是(1,4),
∴CG=2.
故选A.
考点:1.正方形的性质;2.反比例函数图象上点的坐标特征;3.平移的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网