题目内容

【题目】如图,在ABCD中 过点A作AEDC,垂足为E,连接BE,F为BE上一点,且AFE=D.

(1)求证:ABF∽△BEC;

(2)若AD=5,AB=8,sinD=,求AF的长.

【答案】(1)证明见解析;(2). AF=2 .

【解析】

试题分析:(1)由平行四边形的性质得出ABCD,ADBC,AD=BC,得出D+C=180°,ABF=BEC,证出C=AFB,即可得出结论;(2)由勾股定理求出BE,由三角函数求出AE,再由相似三角形的性质求出AF的长.

试题解析:(1)证明:四边形ABCD是平行四边形,ABCD,ADBC,AD=BC,

∴∠D+C=180°,ABF=BEC,∵∠AFB+AFE=180°,∴∠C=AFB,∴△ABF∽△BEC;

(2)解:AEDC,ABDC,∴∠AED=BAE=90°,

在RtABE中,根据勾股定理得:BE=,

在RtADE中,AE=ADsinD=5×=4,BC=AD=5,

由(1)得:ABF∽△BEC,,即,解得:AF=2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网