题目内容

【题目】已知:如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.
(1)以AB边上一点O为圆心,过A、D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;
(2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=2 ,求线段BD、BE与劣弧DE所围成的图形面积.(结果保留根号和π)

【答案】
(1)解:如图:连接OD,

∵OA=OD,

∴∠OAD=∠ADO,

∵∠BAC的角平分线AD交BC边于D,

∴∠CAD=∠OAD,

∴∠CAD=∠ADO,

∴AC∥OD,

∵∠C=90°,

∴∠ODB=90°,

∴OD⊥BC,

即直线BC与⊙O的切线,

∴直线BC与⊙O的位置关系为相切


(2)解:设⊙O的半径为r,则OB=6﹣r,又BD=2

在Rt△OBD中,

OD2+BD2=OB2

即r2+(2 2=(6﹣r)2

解得r=2,OB=6﹣r=4,

∴∠DOB=60°,

∴S扇形ODE= = π,

SODB= ODBD= ×2×2 =2V,

∴线段BD、BE与劣弧DE所围成的图形面积为:SODB﹣S扇形ODE=2 π.


【解析】(1)根据题意得:O点应该是AD垂直平分线与AB的交点;由∠BAC的角平分线AD交BC边于D,与圆的性质可证得AC∥OD,又由∠C=90°,则问题得证;(2)设⊙O的半径为r.则在Rt△OBD中,利用勾股定理列出关于r的方程,通过解方程即可求得r的值;然后根据扇形面积公式和三角形面积的计算可以求得“线段BD、BE与劣弧DE所围成的图形面积为:SODB﹣S扇形ODE=2 π”.
【考点精析】本题主要考查了勾股定理的概念和扇形面积计算公式的相关知识点,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2)才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网