题目内容
【题目】已知点A、B在数轴上分别表示数a,b.若A、B两点间的距离记为d,则d和a,b之间的数量关系是d=|a-b|.
(1)数轴上有理数x与有理数-2所对应两点之间的距离可以表示为______;
(2)|x+6|可以表示数轴上有理数x与有理数_______所对应的两点之间的距离;
若|x+6|= |x -2|,则x=______;
(3)若a=1,b=-2,将数轴折叠,使得A点与﹣7表示的点重合,则B点与数______表示的点P重合;
(4)若数轴上M、N两点之间的距离为11(M在N的左侧),且M、N两点经过(3)中折叠后互相重合,则M、N两点表示的数分别是:M:_____, N:_______;
(5)在题(3)的条件下,点A为定点,点B、P为动点,若移动点B、P中一点后,能否使相邻两点间距离相等?若能,请写出移动方案.
【答案】(1)|x+2|;(2)表示的是x与(-6)之间的距离,x=-2;(3)P点表示的数为-4;(4),或,(5)B点向左移动此时P点向右移动或B点向右移动此时P点向左移动.
【解析】
(1)根据题中的公式,代入即可;
(2)第一个空,|x+6|=|x- (-6)|,根据距离公式填写即可,第二个空两个数的绝对值相等,这两个数相等或这两个数互为相反数,据此列出两个方程求解即可;
(3)画出数轴,据图可得答案;
(4)根据题意M、N距离-3的距离都为,设距离-3的距离为的数为x,据此列出含绝对值的方程,解方程即可;
(5)设B点为x,表示出P点,分①BP=AP②BP=AB③AP=AB三种情况讨论即可.
(1)|x-(-2)|=|x+2|,故表示为|x+2|;
(2)∵|x+6|=|x-(-6)|,
∴表示的是x与(-6)之间的距离,
∵|x+6|= |x -2|
∴x+6=x-2或x+6=-(x-2)
解x+6=x-2无解,解x+6=-(x-2)得x=-2.
则x=-2.
(3)如下图,易得对称轴为经过-3且与数轴垂直的直线,所以P点表示的数为-4.
(4)根据题意M、N在-3的左右两边,且距离-3的距离为,设距-3的距离为的数为x,则|x+3|=,即x+3=,x=或x=,故M点为时N为,M点为时N为.
(5)设B点移动后表示的数为x,P点表示的数为y,则有|x-3|=|y-3|, x-3=y-3或x-3=3-y,解x-3=y-3得x=y,即B、P两点重合舍去,解x-3=3-y得y= -x-6,所以P点表示的数位-x-6所以AB=|1-x|,AP=|1-(-x-6)|=|7+x|,BP=|x-(-x-6)|=|2x+6|.
根据移动后相邻两点间距离相等,可分三类情况
①BP=AP,即|2x+6|=|7+x|即2x+6=7+x或2x+6=-7-x,
解2x+6=7+x得x=1,即A、B两点重合不符合题意舍去,
解2x+6=-7-x得,所以B点向左移动即可,此时P点向右移动;
②BP=AB,即|2x+6|=|1-x|即2x+6=1-x,或2x+6=x-1,
解2x+6=1-x得x=,所以B点向右移动,此时P点向左移动,
解2x+6=x-1得x=-7,此时-x-6=1,A、P两点重合舍去;
③AP=AB,则|1-x|=|7+x|,即1-x=7+x或x-1=7+x
解1-x=7+x得x=3,此时B、P重合舍去,
解x-1=7+x无解舍去.
故B点向左移动此时P点向右移动或B点向右移动此时P点向左移动.