题目内容
【题目】如图,在正方形ABCD中,点M、N是BC、CD边上的点,连接AM、BN,若BM=CN
(1)求证:AM⊥BN
(2)将线段AM绕M顺时针旋转90°得到线段ME,连接NE,试说明:四边形BMEN是平行四边形;
(3)将△ABM绕A逆时针旋转90°得到△ADF,连接EF,当时,请求出 的值
【答案】(1)见解析;(2)见解析;(3).
【解析】
(1)只需证明△ABM≌△BCN即可得到结论;
(2)由(1)可知AM=BN且AM⊥BN,而ME是由AM绕点M顺时针旋转90度得到,于是可得ME与BN平行且相等,结论显然;
(3)易证AMEF为正方形,从而问题转化为求两个正方形的边长之比,由于已经知道BM与BC之比,设BM=a,则由勾股定理易求AM.
解:(1)∵ABCD是正方形,
∴AB=BC,∠ABC=∠C=90°,
又∵BM=CN,
∴△ABM≌△BCN(SAS),
∴∠BAM=∠CBN,
∵∠BAM+∠BMA=90°,
∴∠CBN+∠BMA=90°,
∴AM⊥BN;
(2)∵将线段AM绕M顺时针旋转90°得到线段ME,
∴ME=AM,ME⊥AM,
∵△ABM≌△BCN,
∴AM=BN,
∵AM⊥BN,
∴BN=ME,且BN∥ME,
∴四边形BMEN是平行四边形;
(3)∵将线段AM绕M顺时针旋转90°得到线段ME,将△ABM绕A逆时针旋转90°得到△ADF,
∴∠MAF=∠AME=90°,AF=ME=AM
∴AF∥ME,
∴AMEF是正方形,
∵,可以设BM=a,AB=na,
在直角三角形ABM中,AM=,
∴.
练习册系列答案
相关题目