题目内容
已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.
(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM,DN和MN之间有怎样的数量关系?写出猜想,并加以证明.
(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间又有怎样的数量关系?请直接写出你的猜想.
(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM,DN和MN之间有怎样的数量关系?写出猜想,并加以证明.
(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间又有怎样的数量关系?请直接写出你的猜想.
(1)BM+DN=MN成立.(2)DN-BM=MN.
试题分析:解:(1)BM+DN=MN成立.
如下图,在MB的延长线上,截得BE=DN,连接AE
易证:△ABE≌△ADN
∴AE=AN.
∴∠EAB=∠NMD.
∴∠BAD=90°,∠NAM=45°
∴∠BAM+∠NMD=45°.
∴∠EAB+∠BAM=45°.
∴∠EAM=∠NAM
又AM为公共边,
∴△AEM≌△ANM
∴ME=MN.
∴ME=BE+BM=DN+BM.
∴DN+BM=MN.
(2)
DN-BM=MN.
理由如下:
如图,在DC上截取DF=BM,连接AF.
∵AB=AD,∠ABM=∠ADF=90°,
∴△ABM≌△ADF (SAS)
∴AM=AF,∠MAB=∠FAD.
∴∠MAB+∠BAF=∠FAD+∠BAF=90°,
即∠MAF=∠BAD=90°.
又∠MAN=45°,
∴∠NAF=∠MAN=45°.
∵AN=AN,
∴△MAN≌△FAN.
∴MN=FN,
即 MN=DN-DF=DN-BM;
点评:本题难度骄傲大,主要考查正方形的性质、全等三角形的判定和性质、勾股定理等知识点,运用截长补短法构造全等三角形是关键.也可运用图形的旋转性质构造全等三角形.
练习册系列答案
相关题目