题目内容
【题目】如图,数轴上有A、B、C三个点,A、B、C对应的数分别是a、b、c,且满足++(c-10)2=0,动点P从A出发,以每秒1个单位的速度向终点C运动,设运动时间为t秒.
(1)求a、b、c的值;
(2)若点P到A点的距离是点P到B点的距离的2倍,求点P对应的数;
(3)当点P运动到B点时,点Q从点A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后第几秒时,P、Q两点之间的距离为4?请说明理由.
【答案】(1)a=-24,b=-10,c=10;(2)t=28或;(3)在点Q开始运动后第5或9或l2.5或14.5秒时,P、Q两点之间的距离是4.
【解析】试题分析:(1)根据绝对值和偶次幂具有非负性可得a+24=0,b+10=0,c﹣10=0,解可得a、b、c的值;
(2)分别表示出P点对应的数,AP,BP的长,列方程即可求得点P对应的数;
(3)分类讨论:当P点在Q点的右侧,且Q点还没追上P点时;当P在Q点左侧时,且Q点追上P点后;当Q点到达C点后,当P点在Q点左侧时;当Q点到达C点后,当P点在Q点右侧时,根据两点间的距离是4,可得方程,根据解方程,可得答案.
试题解析:解:(1)∵|a+24|+|b+10|+(c﹣10)2=0,∴a+24=0,b+10=0,c﹣10=0,解得:a=﹣24,b=﹣10,c=10;
(2)点P从A点以1个单位每秒向C运动,∴P:-24+t,∴AP=t,BP=,
∴t=2 ∴t=28或;
(3)当P点在Q点的右侧,且Q点还没追上P点时,3t+4=14+t,解得t=5;
当P点在Q点左侧时,且Q点追上P点后,3t﹣4=14+t,解得t=9;
当Q点到达C点后,当P点在Q点左侧时,14+t+4+3t﹣34=34,t=12.5;
当Q点到达C点后,当P点在Q点右侧时,14+t﹣4+3t﹣34=34,解得t=14.5,综上所述:当Q点开始运动后,第5、9、12.5、14.5秒时,P、Q两点之间的距离为4.