题目内容
(10分)如图1,O为正方形ABCD的中心,
分别延长OA、OD到点F、E,使OF=2OA,
OE=2OD,连接EF.将△EOF绕点O逆时针
旋转角得到△E1OF1(如图2).
(1)探究AE1与BF1的数量关系,并给予证明;
(2)当=30°时,求证:△AOE1为直角三角形.
分别延长OA、OD到点F、E,使OF=2OA,
OE=2OD,连接EF.将△EOF绕点O逆时针
旋转角得到△E1OF1(如图2).
(1)探究AE1与BF1的数量关系,并给予证明;
(2)当=30°时,求证:△AOE1为直角三角形.
解:(1)AE1=BF1,证明如下:
∵O为正方形ABCD的中心,∴OA=OB=OD,∴OE=OF
∵△E1OF1是△EOF绕点O逆时针旋转角得到,∴OE1=OF1。
∵∠AOB=∠EOF=900,∴∠E1OA=900-∠F1OA=∠F1OB
OE1=OF1
在△E1OA和△F1OB中, ∠E1OA=∠F1OB,∴△E1OA≌△F1OB (SAS)
OA=OB
∴AE1=BF1。
(2)取OE1中点G,连接AG。
∵∠AOD=900,=30° ,∴∠E1OA=900-=60°。
∵OE1=2OA,∴OA=OG,∴∠E1OA=∠AGO=∠OAG=60°。
∴ AG=GE1,∴∠GAE1=∠GE1A=30°。∴∠E1AO=90°。
∴△AOE1为直角三角形。
∵O为正方形ABCD的中心,∴OA=OB=OD,∴OE=OF
∵△E1OF1是△EOF绕点O逆时针旋转角得到,∴OE1=OF1。
∵∠AOB=∠EOF=900,∴∠E1OA=900-∠F1OA=∠F1OB
OE1=OF1
在△E1OA和△F1OB中, ∠E1OA=∠F1OB,∴△E1OA≌△F1OB (SAS)
OA=OB
∴AE1=BF1。
(2)取OE1中点G,连接AG。
∵∠AOD=900,=30° ,∴∠E1OA=900-=60°。
∵OE1=2OA,∴OA=OG,∴∠E1OA=∠AGO=∠OAG=60°。
∴ AG=GE1,∴∠GAE1=∠GE1A=30°。∴∠E1AO=90°。
∴△AOE1为直角三角形。
略
练习册系列答案
相关题目