题目内容
【题目】四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=4,AB=7.
(1)旋转中心是点 ,旋转了 度,DE的长度是 ;
(2)BE与DF的关系如何? 请说明理由.(提示:延长BE交DF于点G)
【答案】(1)A;90;3;(2)BE⊥DF.
【解析】试题分析:(1)由△ADF绕点A顺时针旋转90度得到△ABE可知AE=AF=4,AD=AB=7,从而得出DE的长;
(2)根据旋转的性质得出∠F=∠AEB=∠DEG,再根据∠F+∠ADF=90°可得∠DEG+∠ADF=90°,即可得答案.
试题解析:解:(1)根据题意可知,△ADF绕点A顺时针旋转90度得到△ABE,∴AE=AF=4,AD=AB=7,∴DE=AD﹣AE=3;
(2)BE⊥DF.理由如下:
如图,延长BE交DF于点G.由旋转的性质可得:∠AEB=∠F,又∵∠AEB=∠DEG,∴∠F=∠DEG,∵∠F+∠ADF=90°,∴∠DEG+∠ADF=90°,∴∠AGE=90°,即BE⊥DF.
【题目】某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x(元)与日销售量y(个)之间有如下关系:
日销售单价x(元) | 3 | 4 | 5 | 6 |
日销售量y(个) | 20 | 15 | 12 | 10 |
(1)猜测并确定y与x之间的函数关系式,并画出图象;
(2)设经营此贺卡的销售利润为W元,求出W与x之间的函数关系式,
(3)若物价局规定此贺卡的售价最高不能超过10元/个,请你求出当日销售单价x定为多少时,才能获得最大日销售利润?最大利润是多少元?
【题目】钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与作答《2020年新型冠状病毒防治全国统一考试(全国卷)》试卷,社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:
收集数据
甲小区:85 80 95 100 90 95 85 65 75 85 90 90 70 90 100 80 80 90 95 75
乙小区:80 60 80 95 65 100 90 85 85 80 95 75 80 90 70 80 95 75 100 90
整理数据
成绩x(分) | 60≤x≤70 | 70<x≤80 | 80<x≤90 | 90<x≤100 |
甲小区 | 2 | 5 | a | b |
乙小区 | 3 | 7 | 5 | 5 |
分析数据
统计量 | 平均数 | 中位数 | 众数 |
甲小区 | 85.75 | 87.5 | c |
乙小区 | 83.5 | d | 80 |
应用数据
(1)填空:a= ,b= ,c= ,d= ;
(2)若甲小区共有800人参与答卷,请估计甲小区成绩大于90分的人数;
(3)社区管理员看完统计数据,认为甲小区对新型冠状病毒肺炎防护知识掌握更好,请你写出社区管理员的理由.