题目内容
小平所在的学习小组发现,车辆转弯时,能否顺利通过直角弯道的标准是,车辆是否可以行驶到和路的边界夹角是45°的位置(如图1中=2\×GB3 ②的位置).例如,图2是某巷子的俯视图,巷子路面宽4m,转弯处为直角,车辆的车身为矩形ABCD,CD与DE、CE的夹角都是45°时,连接EF,交CD于点G,若GF的长度至少能达到车身宽度,即车辆能通过.
(1)小平认为长8m,宽3m的消防车不能通过该直角转弯,请你帮他说明理由;
(2)小平提出将拐弯处改为圆弧(
和
是以O为圆心,分别以OM和ON为半径的弧),长8m,宽3m的消防车就可以通过该弯道了,具体的方案如图3,其中OM⊥OM′,你能帮小平算出,ON至少为多少时,这种消防车可以通过该巷子?
(1)小平认为长8m,宽3m的消防车不能通过该直角转弯,请你帮他说明理由;
(2)小平提出将拐弯处改为圆弧(
MM′ |
NN′ |
(1)消防车不能通过该直角转弯.
理由如下:如图,作FH⊥EC,垂足为H,
∵FH=EH=4,
∴EF=4
,且∠GEC=45°,
∵GC=4,
∴GE=GC=4,
∴GF=4
-4<3,
即GF的长度未达到车身宽度,
∴消防车不能通过该直角转弯;
(2)若C、D分别与M′、M重合,则△OGM为等腰直角三角形,
∴OG=4,OM=4
,
∴OF=ON=OM-MN=4
-4,
∴FG=OG-OF=
×8-(4
-4)=8-4
<3,
∴C、D在
上,
设ON=x,连接OC,在Rt△OCG中,
OG=x+3,OC=x+4,CG=4,
由勾股定理得,OG2+CG2=OC2,
即(x+3)2+42=(x+4)2,
解得x=4.5.
答:ON至少为4.5米.
理由如下:如图,作FH⊥EC,垂足为H,
∵FH=EH=4,
∴EF=4
2 |
∵GC=4,
∴GE=GC=4,
∴GF=4
2 |
即GF的长度未达到车身宽度,
∴消防车不能通过该直角转弯;
(2)若C、D分别与M′、M重合,则△OGM为等腰直角三角形,
∴OG=4,OM=4
2 |
∴OF=ON=OM-MN=4
2 |
∴FG=OG-OF=
1 |
2 |
2 |
2 |
∴C、D在
MM′ |
设ON=x,连接OC,在Rt△OCG中,
OG=x+3,OC=x+4,CG=4,
由勾股定理得,OG2+CG2=OC2,
即(x+3)2+42=(x+4)2,
解得x=4.5.
答:ON至少为4.5米.
练习册系列答案
相关题目