题目内容
【题目】如图,在中,,是边上任意一点(点与点、不重合),以为一直角边在的外部作,,连接,.
(1)在图中,若,,现将图中的绕着点顺时针旋转锐角,得到图,那么线段,之间有怎样的关系,写出结论,并说明理由;
(2)在图中,若,,,,现将图中的绕着点顺时针旋转锐角,得到图,连接、.
①求证:;
②计算:的值.
【答案】(1)BE=CD,BE⊥CD;理由见解析;(2)①证明见解析;②170.
【解析】
(1)结论:BE=CD,BE⊥CD;只要证明△ABE≌△ACD,即可解决问题;
(2)①根据两边成比例夹角相等即可证明△BAE∽△CAD;
②由①得到∠BEA=∠CDA,再根据等量代换得到∠EGD=90°,即DG⊥BE,根据勾股定理计算即可.
(1)BE=CD,BE⊥CD
理由:如图,设CD与BE、AE分别交于点G、F.
∵∠BAC=∠DAE=90°,∴∠BAC+∠CAE=∠DAE+∠CAE
即∠BAE=∠CAD
又∵AB=AC,AE=AD
∴△ABE≌△ACD(SAS)∴BE=CD,∠ADC=∠AEB
∵∠EAD=90°,∴∠ADC+∠AFD=90°,
又∵∠ADC=∠AEB,∠AFD=∠EFG
∴∠AEB+∠EFG=90°,
∴∠EGF=90°
∴BE⊥CD
(2)①∵∠BAC=∠DAE=90°,
∴∠BAC+∠CAE=∠DAE+∠CAE,即∠BAE=∠CAD
∵AB=5,AC=3,AE=10,AD=6
∴,,∴
∴△BAE∽△CAD
②如图,延长DC交BE于点G
∵△BAE∽△CAD
∴∠BEA=∠CDA
在Rt△ADE中,∠ADE+∠AED=90°
∴∠CDA+∠CDE+∠AED=90°
∴∠BEA+∠AED+∠CDE=90°
∴∠EGD=90°
练习册系列答案
相关题目