题目内容
在△ABC中,∠A=45°,∠B=60°,BC=1,则△ABC的面积为______.
由正弦定理,得
=
,b=
=
,
由余弦定理,得
(
)2=c2+1-2•c•1•cos60°,即2c2-2c-1=0,
解之得c=
舍去负值,
故S△ABC=
sin60°=
•
•
=
.
故答案为:
.

sin60° |
b |
sin45° |
1 |
sin60° |
sin45° |
| ||
2 |
由余弦定理,得
(
| ||
2 |
解之得c=
1±
| ||
2 |
故S△ABC=
1 |
2 |
1 |
2 |
1+
| ||
2 |
| ||
2 |
3+
| ||
8 |
故答案为:
3+
| ||
8 |


练习册系列答案
相关题目