题目内容
【题目】如图,PA、PB分别与⊙O相切于点A、B,若∠P=50°,则∠C的值是( )
A. 50°B. 55°C. 60°D. 65°
【答案】D
【解析】
连接OA、OB,由已知的PA、PB与圆O分别相切于点A、B,根据切线的性质得到OA⊥AP,OB⊥PB,从而得到∠OAP=∠OBP=90°,然后由已知的∠P的度数,根据四边形的内角和为360°,求出∠AOB的度数,最后根据同弧所对的圆周角等于它所对圆心角度数的一半即可得到∠C的度数.
解:连接OA、OB,
∵PA、PB与圆O分别相切于点A、B,
∴OA⊥AP,OB⊥PB,
∴∠OAP=∠OBP=90°,又∠P=50°,
∴∠AOB=360°-90°-90°-50°=130°,
又∵∠ACB和∠AOB分别是弧AB所对的圆周角和圆心角,
∴∠C=∠AOB=×130°=65°.
故选:D.
练习册系列答案
相关题目
【题目】己知二次函数y=ax2+bx+c的y与x的部分对应值如下表;
x | -1 | 0 | 1 | 3 |
y | -3 | 1 | 3 | 1 |
下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x﹤l时,函数值y随x 的增大而增大;④方程ax2+bx+c=0有一个根大于4.其中正确的结论有( )
A. 4个B. 1个C. 3个D. 2个