题目内容
【题目】如图所示,在平面直角坐标系中,若干个半径为2个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P从原点O出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒2个单位长度,点在弧线上的速度为每秒个单位长度,则第2018秒时,点P的坐标是_____.
【答案】(2018,0).
【解析】
设第n秒运动到Pn(n为自然数)点,根据点P的运动规律找出部分Pn点的坐标,根据坐标的变化找出变化规律“P4n+1(4n+1,),P4n+2(4n+2,0),P4n+3(4n+3,﹣),P4n+4(4n+4,0)”,依此规律即可得出结论.
设第n秒运动到Pn(n为自然数)点,
观察,发现规律:P1(1,),P2(2,0),P3(3,﹣),P4(4,0),P5(5,),…,
∴P4n+1(4n+1,),P4n+2(4n+2,0),P4n+3(4n+3,﹣),P4n+4(4n+4,0),
∵2018=4×504+2,
∴P2018为(2018,0),
故答案为:(2018,0).
练习册系列答案
相关题目