题目内容
【题目】抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点
(1)求抛物线的解析式;
(2)求抛物线与x轴的交点坐标,与y轴交点坐标;
(3)画出这条抛物线;
(4)根据图象回答:①当x取什么值时,y>0,y<0?②当x取什么值时,y的值随x的增大而减小?
【答案】
(1)解:∵抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点,
∴m=3,
∴抛物线的解析式为y=﹣x2+2x+3
(2)解:令y=0,得x2﹣2x﹣3=0,
解得x=﹣1或3,
∴抛物线与x轴的交点坐标(﹣1,0),(3,0);
令x=0,得y=3,
∴抛物线与y轴的交点坐标(0,3)
(3)解:对称轴为x=1,顶点坐标(1,4),图象如图
(4)解:如图,①当﹣1<x<3时,y>0;
当x<﹣1或x>3时,y<0;
②当x>1时,y的值随x的增大而减小.
【解析】(1)将(0,3)代入y=﹣x2+(m﹣1)x+m求得m,即可得出抛物线的解析式;(2)令y=0,求得与x轴的交点坐标;令x=0,求得与y轴的交点坐标;(3)得出对称轴,顶点坐标,画出图象即可;(4)当y>0时,即图象在一、二象限内的部分;当y<0时,即图象在一、二象限内的部分;在对称轴的右侧,y的值随x的增大而减小.
【考点精析】本题主要考查了二次函数的图象和抛物线与坐标轴的交点的相关知识点,需要掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.才能正确解答此题.