题目内容
【题目】在二次函数,与的部分对应值如下表:
… | … | |||||
… | … |
则下列说法:①图象经过原点;②图象开口向下;③图象经过点;④当时,随的增大而增大;⑤方程有两个不相等的实数根.其中正确的是( )
A. ①②③ B. ①③⑤ C. ①③④ D. ①④⑤
【答案】B
【解析】
结合图表可以得出当x=0或2时,y=0,x=3时,y=3,根据此三点可求出二次函数解析式,从而得出抛物线的性质.
解:∵由图表可以得出当x=0或2时,y=0,x=3时,y=3,
∴
解得:
∴y=x2-2x,
∵c=0,∴图象经过原点,故①正确;
∵a=1>0,
∴抛物线开口向上,故②错误;
把x=-1代入得,y=3,
∴图象经过点(-1,3),故③正确;
∵抛物线的对称轴是x=1,
∴x>1时,y随x的增大而增大,x<1时,y随x的增大而减小,故④错误;
∵抛物线y=ax2+bx+c与x轴有两个交点(0,0)、(2,0)
∴ax2+bx+c=0有两个不相等的实数根,故⑤正确;
故选:B.
练习册系列答案
相关题目