题目内容
【题目】如图1~4,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S1 , S2 , S3 , …,S10 , 则S1+S2+S3+…+S10= .
【答案】π
【解析】解:(1)图1,过点O做OE⊥AC,OF⊥BC,垂足为E、F,
则∠OEC=∠OFC=90°
∵∠C=90°
∴四边形OECF为矩形
∵OE=OF
∴矩形OECF为正方形
设圆O的半径为r,则OE=OF=r,AD=AE=3﹣r,BD=4﹣r
∴3﹣r+4﹣r=5,r= =1
∴S1=π×12=π
(2.)图2,
由S△ABC= ×3×4= ×5×CD
∴CD=
由勾股定理得:AD= = ,BD=5﹣ =
由(1)得:⊙O的半径= = ,⊙E的半径= =
∴S1+S2=π× +π× =π
(3.)图3,
由S△CDB= × × = ×4×MD
∴MD=
由勾股定理得:CM= = ,MB=4﹣ =
由(1)得:⊙O的半径= ,:⊙E的半径= = ,:⊙F的半径= =
∴S1+S2+S3=π× +π× +π× =π
∴图4中的S1+S2+S3+S4=π
则S1+S2+S3+…+S10=π
故答案为:π.
(1)图1,作辅助线构建正方形OECF,设圆O的半径为r,根据切线长定理表示出AD和BD的长,利用AD+BD=5列方程求出半径r= (a、b是直角边,c为斜边),运用圆面积公式=πr2求出面积=π;(2)图2,先求斜边上的高CD的长,再由勾股定理求出AD和BD,利用半径r= (a、b是直角边,c为斜边)求两个圆的半径,从而求出两圆的面积和=π;(3)图3,继续求高DM和CM、BM,利用半径r= (a、b是直角边,c为斜边)求三个圆的半径,从而求出三个圆的面积和=π;
综上所述:发现S1+S2+S3+…+S10=π.