题目内容
【题目】如图,点A,B,C,D在同一直线上,∠M=∠N,AM=BN,请你添加一个条件,使得△ACM≌△BDN,并给出证明.
(1)你添加的条件是:_____.
(2)证明:
【答案】(1)∠MAC=∠NBD(答案不唯一);(2)证明见解析.
【解析】
(1)判定两个三角形全等的一般方法有:ASA、SSS、SAS、AAS、HL,所以可添加条件为∠MAC=∠NBD,或CM=DN或∠ACM=∠BDN,(2)根据全等三角形的判定定理即可得到结论.
解:(1)∵∠M=∠N,AM=BN,
∴利用角边角定理,可添加条件∠MAC=∠NBD,
利用角角边定理可添加条件∠ACM=∠BDN,
利用边角边定理,可添加条件CM=DN
故答案为:∠MAC=∠NBD(答案不唯一);
(2)证明:在△ACM和△BDN中
∵∠M=∠N,AM=BN,∠MAC=∠NBD
∴△ACM≌△BDN(ASA).
【题目】某篮球队要从小军和小勇两名队员中选派一人参加市篮球协会的投篮比赛,在最近的十次选拔测试中,他俩投篮十次的进球个数如下表所示:
小军 | 7 | 8 | 8 | 8 | 8 | 9 | 8 | 9 | 7 | 8 |
小勇 | 7 | 8 | 9 | 5 | 9 | 10 | 7 | 10 | 9 | 6 |
(l)请填写下表:
平均数 | 中位数 | 众数 | 极差 | 方差 | |
小军 | 8 | 8 | ______ | span>2 | ______ |
小勇 | ______ | ______ | 9 | _______ | 2.6 |
(2)历届比赛成绩表明,十次投进八球就很可能获奖但很难夺冠,十次投进九球就很可能夺冠,那么你认为想要获奖应该派谁参赛,想要夺冠应该派谁参赛?请说明理由.
【题目】某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)
与每件销售价x(元)的关系数据如下:
x | 30 | 32 | 34 | 36 |
y | 40 | 36 | 32 | 28 |
(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);
(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?
(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?