题目内容
【题目】如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.
【答案】详见解析.
【解析】试题分析:根据CE∥AB,可得∠DAO=∠ECO,再由OA=OC,利用ASA可证明△ADO≌△ECO,根据全等三角形的性质可得AD=CE,再根据一组对边平行且相等的四边形是平行四边形即可判定四边形ADCE是平行四边形,由此可得出结论.
试题解析:解:猜想线段CD与线段AE的大小关系和位置关系是:相等且平行.
理由:∵CE∥AB,
∴∠DAO=∠ECO,
∵在△ADO和△ECO中
∴△ADO≌△ECO(ASA),
∴AD=CE,
∴四边形ADCE是平行四边形,
∴CDAE.
练习册系列答案
相关题目