题目内容

【题目】如图所示,两个完全相同的含30°角的Rt△ABC和Rt△AED叠放在一起,BC交DE于点O,AB交DE于点G,BC交AE于点F,且∠DAB=30°,以下三个结论:①AF⊥BC;②△ADG≌△AFC;③O为BC的中点;④AG=BG.其中正确的个数为(
A.1
B.2
C.3
D.4

【答案】D
【解析】解:∵两块完全相同的含30°角的直角三角板叠放在一起,且∠DAB=30°. ∴∠CAF=30°,
∴∠GAF=60°,
∴∠AFB=90°,
∴AF丄BC正确,故①正确,
∵AD=AC,∠DAG=∠CAF,∠D=∠C=60°,
∴△ADG≌△ACF正确,故②正确,
∵△ADG≌△ACF,
∴AG=AF,
∵AO=AO,
∠AGO=∠AFO=90°,
∴△AGO≌△AFO,
∴∠OAF=30°,
∴∠OAC=60°,
∴AO=CO=AC,
∴BO=CO=AO,故③正确,
在Rt△AGE中,∵∠AGE=90°,∠E=30°,
∴AG= AE,
∵AB=AE,
∴AG= AB,
∴AG=GB,故④正确.
故选D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网