题目内容

【题目】综合题。
(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:CN∥AB.

(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论CN∥AB还成立吗?请说明理由.

【答案】
(1)

证明:

∵△ABC和△AMN都是等边三角形,

∴AB=AC,AM=AN,∠BAC=∠MAN=60°,

∴∠BAM+∠MAC=∠MAC+∠CAN,

∴∠BAM=∠CAN,

在△ABM和△ACN中,

∴△ABM≌△ACN(SAS),

∴∠ACN=∠ABM=60°,

∵∠ACB=60°

∴∠BCN+∠ABM=180°;

∴CN∥AB


(2)

证明:成立,

理由如下:

∵△ABC和△AMN都是等边三角形,

∴AB=AC,AM=AN,∠BAC=∠MAN=60°,

∴∠BAC+∠CAM=∠CAM+∠MAN,

∴∠BAM=∠CAN

在△ABM和△ACN中,

∴△ABM≌△ACN(SAS),

∴∠ACN=∠ABM=60°,

∵∠ACB=60°

∴∠BCN+∠ABM=180°;

∴CN∥AB


【解析】(1)利用等边三角形的性质得出AB=AC,AM=AN,∠BAC=∠MAN,进而得出∠BAM=∠CAN,即可判断出△ABM≌△ACN(SAS),得出∠ACN=∠ABM=60°,进而得出∠BCN+∠ABM=180°即可得出结论;(2)同(1)的方法即可得出结论.
【考点精析】解答此题的关键在于理解全等三角形的性质的相关知识,掌握全等三角形的对应边相等; 全等三角形的对应角相等,以及对等边三角形的性质的理解,了解等边三角形的三个角都相等并且每个角都是60°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网