题目内容
【题目】如图,平面直角坐标系中,直线AB:交y轴于点,交x轴于点B.
(1)求直线AB的表达式和点B的坐标;
(2)直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上一动点,且在点D的上方,设点P的纵坐标为n.
①当时,求点P的坐标;
②在①的条件下,以PB为斜边在第一象限作等腰直角,求点C的坐标.
【答案】(1)(4,0);(2)①(2,6);②(6,4)
【解析】
(1)把点A的坐标代入直线解析式可求得b=4,则直线的解析式为y=-x+4,令y=0可求得x=4,故此可求得点B的坐标;
(2)①由题l垂直平分OB可知OE=BE=2,将x=2代入直线AB的解析式可求得点D的坐标,设点P的坐标为(2,n),然后依据S△APB=S△APD+S△BPD可得到△APB的面积与n的函数关系式为S△APB=2n-4;由S△ABP=8得到关于n的方程可求得n的值,从而得到点P的坐标;
②如图1所示,过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.设点C的坐标为(p,q),先证明△PCM≌△CBN,得到CM=BN,PM=CN,然后由CM=BN,PM=CN列出关于p、q的方程组可求得p、q的值;如图2所示,同理可求得点C的坐标.
解:(1)∵把A(0,4)代入y=-x+b得b=4,
∴直线AB的函数表达式为:y=-x+4.
令y=0得:-x+4=0,解得:x=4,
∴点B的坐标为(4,0);
(2)①∵l垂直平分OB,
∴OE=BE=2.
∵将x=2代入y=-x+4得:y=-2+4=2.
∴点D的坐标为(2,2).
∵点P的坐标为(2,n),
∴PD=n-2.
∵S△APB=S△APD+S△BPD,
∴S△ABP=PDOE+PDBE=(n-2)×2+(n-2)×2=2n-4.
∵S△ABP=8,
∴2n-4=8,解得:n=6.∴点P的坐标为(2,6).
②如图1所示:过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.
设点C(p,q).
∵△PBC为等腰直角三角形,PB为斜边,
∴PC=PB,∠PCM+∠MCB=90°,
∵CM⊥l,BN⊥CM,
∴∠PMC=∠BNC=90°,∠MPC+∠PCM=90°.
∴∠MPC=∠NCB.
∵PC=BC,
,
∴△PCM≌△CBN.
∴CM=BN,PM=CN.
∴ ,解得.
∴点C的坐标为(6,4).
如图2所示:过点C作CM⊥l,垂足为M,再过点B作BN⊥CM于点N.
设点C(p,q).
∵△PBC为等腰直角三角形,PB为斜边,
∴PC=CB,∠PCM+∠MCB=90°.
∵CM⊥l,BN⊥CM,
∴∠PMC=∠BNC=90°,∠MPC+∠PCM=90°.
∴∠MPC=∠NCB.
在△PCM和△CBN中,
,
∴△PCM≌△CBN.
∴CM=BN,PM=CN.
∴ ,解得 .
∴点C的坐标为(0,2)舍去.
综上所述点C的坐标为(6,4).