题目内容

【题目】如图,DB∥AC,且DB= AC,E是AC的中点,
(1)求证:BC=DE;
(2)连接AD、BE,若要使四边形DBEA是矩形,则给△ABC添加什么条件,为什么?

【答案】
(1)证明:∵E是AC中点,

∴EC= AC.

∵DB= AC,

∴DB=EC.

又∵DB∥EC,

∴四边形DBCE是平行四边形.

∴BC=DE


(2)添加AB=BC.

理由:∵DB AE,

∴四边形DBEA是平行四边形.

∵BC=DE,AB=BC,

∴AB=DE.

ADBE是矩形


【解析】(1)要证明BC=DE,只要证四边形BCED是平行四边形.通过给出的已知条件便可.(2)矩形的判定方法有多种,可选择利用“对角线相等的平行四边形为矩形”来解决.
【考点精析】本题主要考查了平行四边形的判定与性质和矩形的判定方法的相关知识点,需要掌握若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积;有一个角是直角的平行四边形叫做矩形;有三个角是直角的四边形是矩形;两条对角线相等的平行四边形是矩形才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网