题目内容
【题目】关于x的方程x2+(2k+1)x+k2+2=0有两个实数根x1、x2
(1)求实数k的取值范围;
(2)若x1、x2满足|x1|+|x2|=|x1x2|﹣1,求k的值.
【答案】
(1)解:根据题意得△=(2k+1)2﹣4(k2+2)≥0,
解得k≥
(2)解:根据题意得x1+x2=﹣(2k+1)<0,x1x2=k2+2>0,
∴x1<0,x2<0,
∵|x1|+|x2|=|x1x2|﹣1,
∴﹣(x1+x2)=x1x2﹣1,
∴2k+1=k2+2﹣1,
整理得k2﹣2k=0,解得k1=0,k2=2,
∵k≥ ,
∴k=2
【解析】(1)根据判别式的意义得到△=(2k+1)2﹣4(k2+2)≥0,然后解不等式即可;(2)根据根与系数的关系得到x1+x2=﹣(2k+1)<0,x1x2=k2+2>0,则利用有理数的乘法性质可判断x1<0,x2<0,然后去绝对值得到﹣(x1+x2)=x1x2﹣1,则2k+1=k2+2﹣1,整理得到k2﹣2k=0,再解关于k的方程即可得到满足条件的k的值.
练习册系列答案
相关题目