题目内容
【题目】某家具商场计划购进某种餐桌和餐椅,已知每张餐椅的进价比每张餐桌的进价便宜110元,餐桌零售价270元/张,餐椅零售价70元/张.已知用600元购进的餐桌数量与用160元购进的餐椅数量相同.
(1)求该家具商场计划购进的餐桌、餐椅的进价分别为多少元?
(2)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和四张餐椅配成一套)销售,售价500元/套,其余餐桌、餐椅以零售方式销售.请问该商场怎样进货,才能获得最大利润?最大利润是多少?
【答案】(1)该家具商场计划购进的餐桌、餐椅的进价分别为150元和40元;(2)购进餐桌30张、餐椅170张时,才能获得最大利润,最大利润是7950元.
【解析】
(1)设每张餐桌的价格为a元,则每张餐椅的价格为(a-110)元,根据用600元购进的餐桌数量与用160元购进的餐椅数量相同可得等量关系列出方程;
(2)设购进餐桌x张,则购进餐椅(5x+20)张,销售利润为W元,根据题意将W用x表示出来,根据餐桌和餐椅的总数量不超过200张得出x的取值范围,从而可得结果.
解:(1)设每张餐桌的价格为a元,则每张餐椅的价格为(a-110)元,
由题意得,
解得a=150,
经检验,a=150是原分式方程的解 ,
此时a﹣110=40,
答:该家具商场计划购进的餐桌、餐椅的进价分别为150元和40元;
(2)设购进餐桌x张,则购进餐椅(5x+20)张,销售利润为W元.
由题意得:x+5x+20200,
解得:x30
W=12x·(5001504×40)+12x·(270150)+(5x+2012x4)·(7040)=245x+600
∵k=245>0,
∴W随x的增大而增大,
∴当x=30时,W取最大值,最大值为7950.
此时a﹣110=40,
答:购进餐桌30张、餐椅170张时,才能获得最大利润,最大利润是7950元.