题目内容
【题目】如图,在Rt△ABC中,∠C=90°,BC=4,AC=4,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若∠AB′F为直角,则AE的长为__________.
【答案】
【解析】
作EH⊥AB′交AB′的延长线于H.设AE=x.证明Rt△ADC≌Rt△ADB′(HL),得出AC=AB′=4,在Rt△EHB′中,B′H=B′E=(8-x),EH=B′H=
(8-x),在Rt△AEH中,由勾股定理得出方程,解方程即可.
解:作EH⊥AB′交AB′的延长线于H,连接AD.设AE=x.
在Rt△ABC中,,BC=4,AC=4,∴AB=8,tanB==
∴∠B=30°.
∵点D是BC的中点,∴BD=DC
由折叠的性质,得BD= DB′.
∴CD=DB′,
∵AD=AD,
∴Rt△ADC≌Rt△ADB′(HL),
∴AC=AB′=4,
∵∠AB′E=∠AB′F+∠EB′F=90°+30°=120°,
∴∠EB′H=60°,
在Rt△EHB′中,B′H=B′E=(8-x),EH=B′H
(8-x),
在Rt△AEH中,∵EH2+AH2=AE2,
∴[(8-x)]2+[4+(8-x)]2=x2,
解得:x=.
【题目】如图1,小明用一张边长为的正三角形硬纸板设计一个无盖的正三棱柱糖果盒,从三个角处分别剪去一个形状大小相同的四边形,其一边长记为,再折成如图2所示的无盖糖果盒,它的容积记为.
(1)关于的函数关系式是__________,自变量的取值范围是__________.
(2)为探究随的变化规律,小明类比二次函数进行了如下探究:
①列表:请你补充表格中的数据:
0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | |
0 | 3.125 | ________ | 3.375 | ________ | 0.625 | 0 |
②描点:请你把上表中各组对应值作为点的坐标,在平面直角坐标系中描出相应的点;
③连线:请你用光滑的曲线顺次连接各点.
(3)利用函数图象解决:
①该糖果盒的最大容积是__________;
②若该糖果盒的容积超过,请估计糖果盒的底边长的取值范围.(保留一位小数)