ÌâÄ¿ÄÚÈÝ
Èçͼ£¬¾ØÐÎABCD£¨µãAÔÚµÚÒ»ÏóÏÞ£©ÓëxÖáµÄÕý°ëÖáÏཻÓÚM£¬ÓëyµÄ¸º°ëÖáÏཻÓÚN£¬AB¡ÎxÖᣬ·´±ÈÀýº¯ÊýµÄͼÏóy=
¹ýA¡¢CÁ½µã£¬Ö±ÏßACÓëxÖáÏཻÓÚµãE¡¢ÓëyÖáÏཻÓÚµãF£®
£¨1£©ÈôB£¨-3£¬3£©£¬Ö±ÏßACµÄ½âÎöʽΪy=ax+b£®
¢ÙÇóaµÄÖµ£»
¢ÚÁ¬½ÓOA¡¢OC£¬Èô¡÷OACµÄÃæ»ý¼ÇΪS¡÷OAC£¬¡÷ABCµÄÃæ»ý¼ÇΪS¡÷ABC£¬¼ÇS=S¡÷ABC-S¡÷OAC£¬ÎÊSÊÇ·ñ´æÔÚ×îСֵ£¿Èô´æÔÚ£¬Çó³öÆä×îСֵ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨2£©AEÓëCFÊÇ·ñÏàµÈ£¿ÇëÖ¤Ã÷ÄãµÄ½áÂÛ£®
k |
x |
£¨1£©ÈôB£¨-3£¬3£©£¬Ö±ÏßACµÄ½âÎöʽΪy=ax+b£®
¢ÙÇóaµÄÖµ£»
¢ÚÁ¬½ÓOA¡¢OC£¬Èô¡÷OACµÄÃæ»ý¼ÇΪS¡÷OAC£¬¡÷ABCµÄÃæ»ý¼ÇΪS¡÷ABC£¬¼ÇS=S¡÷ABC-S¡÷OAC£¬ÎÊSÊÇ·ñ´æÔÚ×îСֵ£¿Èô´æÔÚ£¬Çó³öÆä×îСֵ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨2£©AEÓëCFÊÇ·ñÏàµÈ£¿ÇëÖ¤Ã÷ÄãµÄ½áÂÛ£®
£¨1£©¢Ù¡ßËıßÐÎABCDÊǾØÐΣ¬ÇÒAB¡ÎxÖᣬB£¨-3£¬3£©£¬
¡àA£¨
£¬3£©¡¢C£¨-3£¬-
£©£®
¡ßy=ax+b¾¹ýA¡¢CÁ½µã£¬
¡à
£¬ÏûÈ¥bµÃ£º£¨
+3£©a=
+3£®
¡ßk£¾0£¬¹Ê
+3¡Ù0£¬¡àa=1£®
¢ÚS=S¡÷ABC-S¡÷OAC=S¡÷ACD-S¡÷OAC=S¡÷AOM+S¡÷CON+S¾ØÐÎONDM£¬
¡àS=
+
+
=
£¨k+
£©2-
£»
¡àµ±k£¾-
ʱ£¬SËækµÄÔö´ó¶øÔö´ó£¬
ÓÉÓÚk£¾0£¬¹ÊkûÓÐ×îСֵ£¬SҲûÓÐ×îСֵ£®
£¨2£©AE=CF£¬ÀíÓÉÈçÏ£º
Á¬½ÓMN£¬ÉèABÓëyÖáµÄ½»µãΪP£¬BCÓëxÖáµÄ½»µãΪQ£»
ÔòS¾ØÐÎAPOM=S¾ØÐÎCQON=k£¬
¡àDN•AD=DM•CD£¬¼´
=
£¬
ÓÖ¡ß¡ÏD=¡ÏD£¬
¡à¡÷DNM¡×¡÷DCA£¬µÃ¡ÏDNM=¡ÏDCA£¬
¡àMN¡ÎAC£»
ÓÖ¡ßAD¡ÎyÖᣬ¹ÊËıßÐÎAFNMÊÇƽÐÐËıßÐΣ¬
ͬÀíËıßÐÎCNMEÊÇƽÐÐËıßÐΣ¬
¡àCE=MN=AF£¬¹ÊAE=CF£®
¡àA£¨
k |
3 |
k |
3 |
¡ßy=ax+b¾¹ýA¡¢CÁ½µã£¬
¡à
|
k |
3 |
k |
3 |
¡ßk£¾0£¬¹Ê
k |
3 |
¢ÚS=S¡÷ABC-S¡÷OAC=S¡÷ACD-S¡÷OAC=S¡÷AOM+S¡÷CON+S¾ØÐÎONDM£¬
¡àS=
k |
2 |
k |
2 |
k2 |
9 |
1 |
9 |
9 |
2 |
9 |
4 |
¡àµ±k£¾-
9 |
2 |
ÓÉÓÚk£¾0£¬¹ÊkûÓÐ×îСֵ£¬SҲûÓÐ×îСֵ£®
£¨2£©AE=CF£¬ÀíÓÉÈçÏ£º
Á¬½ÓMN£¬ÉèABÓëyÖáµÄ½»µãΪP£¬BCÓëxÖáµÄ½»µãΪQ£»
ÔòS¾ØÐÎAPOM=S¾ØÐÎCQON=k£¬
¡àDN•AD=DM•CD£¬¼´
DN |
CD |
DM |
AD |
ÓÖ¡ß¡ÏD=¡ÏD£¬
¡à¡÷DNM¡×¡÷DCA£¬µÃ¡ÏDNM=¡ÏDCA£¬
¡àMN¡ÎAC£»
ÓÖ¡ßAD¡ÎyÖᣬ¹ÊËıßÐÎAFNMÊÇƽÐÐËıßÐΣ¬
ͬÀíËıßÐÎCNMEÊÇƽÐÐËıßÐΣ¬
¡àCE=MN=AF£¬¹ÊAE=CF£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿