题目内容
【题目】“如果二次函数的图象与轴有两个公共点,那么一元二次方程有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若、(<)是关于的方程的两根且<则请用“<”来表示、、、的大小是_________.
【答案】p<a<b<q.
【解析】
依题意画出函数y=(x﹣a)(x﹣b)图象草图,根据二次函数的增减性求解.
依题意,画出函数y=(x﹣a)(x﹣b)的图象,如图所示.
函数图象为抛物线,开口向上,与x轴两个交点的横坐标分别为a,b(a<b).
方程2﹣(x﹣a)(x﹣b)=0
转化为(x﹣a)(x﹣b)=2,方程的两根是抛物线y=(x﹣a)(x﹣b)与直线y=2的两个交点.
由p<q,可知对称轴左侧交点横坐标为p,右侧为q.
由抛物线开口向上,则在对称轴左侧,y随x增大而减少,则有p<a;在对称轴右侧,y随x增大而增大,则有b<q.
综上所述:可知p<a<b<q.
故答案为:p<a<b<q.
练习册系列答案
相关题目
【题目】在日历上,我们可以发现其中某些数满足一定的规律,如图是2012年8月份的日历. 我们任意选择其中所示的方框部分,将每个方框部分中4个位置上的数交叉相乘,再相减,例如:,,不难发现,结果都是7.
(1)请你再选择两个类似的部分试一试,看看是否符合这个规律;
(2)请你利用整式的运算对以上的规律加以证明.
日 | 一 | 二 | 三 | 四 | 五 | 六 |
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |