题目内容
【题目】矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接DE,把△DCE沿DE折叠,使点C落在点C′处,当△BEC′为直角三角形时,BE的长为_____.
【答案】2或5.
【解析】
分情况讨论:当∠BC′E=90°时,如图1;当∠BEC′=90°时,如图2,分别利用矩形的性质和勾股定理进行计算即可.
解:如图1,当∠BC′E=90°时,
在矩形ABCD中,AB=6,AD=BC=8,
∴BD=10,
∵把△DCE沿DE折叠,使点C落在点C′处,
∴∠DC′E=∠C=90°,
∵∠BC′E=90°,
∴B,C′,D三点共线,
∴DC′=DC=6,
∴BC′=4,BE=8﹣C′E,
∵BC′2+EC′2=BE2,
∴42+C′E2=(8﹣C′E)2,
解得C′E=3,
∴BE=8﹣3=5;
如图2,当∠BEC′=90°时,
在矩形ABCD中,AB=CD=6,AD=BC=8,
∵把△DCE沿DE折叠,使点C落在点C′处,
∴∠DC′E=∠C=90°,
∵∠BEC′=90°,
∴∠CEC′=90°,
∵CD=C′D,
∴四边形ECDC′是正方形,
∴C′E=CE=CD=6,
∴BE=8-6=2.
综上所述,当△BEC′为直角三角形时,BE的长为2或5,
故答案为:2或5.
【题目】某校数学兴趣小组,对函数y=|x﹣1|+1的图象和性质进行了探究,探究过程如下:
(1)自变量x的取值范围是全体实数,x与y的几组对应值如表:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 5 | 4 | m | 2 | 1 | 2 | 3 | 4 | 5 | … |
其中m= .
(2)如图,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象:
(3)根据画出的函数图象特征,仿照示例,完成下列表格中的函数变化规律:
序号 | 函数图象特征 | 函数变化规律 |
示例1 | 在直线x=1的右侧,函数图象呈上升状态 | 当x>1时,y随x的增大而增大 |
① | 在直线x=1的左侧,函数图象呈下降状态 |
|
示例2 | 函数图象经过点(﹣3,5) | 当x=﹣3时,y=5 |
② | 函数图象的最低点是(1,1) |
|
(4)当2<y≤4时,x的取值范围为 .