题目内容
【题目】如图,点是直线上的一点,将一直角三角板如图摆放,过点作射线平分.当直角三角板绕点O继续顺时针旋转一周回到图1的位置时,在旋转过程中你发现与之间有怎样的数量关系?
(1)如图1,当时,若,求的度数;
(2)如图2,当是钝角时,使得直角边在直线的上方,若,其他条件不变,直接写出的度数;
(3)若,在旋转过程中你发现与之间有怎样的数量关系?请你直接用含的代数式表示的度数;
【答案】(1)20°;(2);(3)或
【解析】
(1)根据角平分线的作法作出OE平分∠BOC,先根据平角的定义求出∠BOC,再根据角平分线的定义求出∠COE,再根据直角的定义即可求解;
(2)先根据平角的定义求出∠BOC,再根据角平分线的定义求出∠COE,再根据直角的定义即可求解;
(3)分两种情况:0°≤∠AOC≤180°,0°≤∠DOE≤180°,可求∠AOC与∠DOE之间的数量关系.
解:(1)∵∠AOC+∠BOC=180°,∠AOC=40°,
∴∠BOC=140°,
∵OE平分∠BOC,
∴∠COE=∠BOC 70°,
∵∠COD=90°,
∴∠DOE=∠COD-∠COE=20°;
(2)∵∠AOC+∠BOC=180°,∠AOC=160°,
∴∠BOC=180°-160°=20°;
∵OE平分∠BOC,
∴∠COE=∠BOC=10°,
∵∠COD=90°,
∴∠DOE=90°-10°=80°;
(3)当OC在AB上方时,∠DOE的度数为,
∵∠AOC=α,
∴∠BOC=180°-α,
∵OE平分∠BOC,
∴∠COE=90°-,
∴∠DOE=90°-(90°-)=,
同理:当OC在AB下方时,∠DOE=180°-.
∴∠DOE=∠AOC=(0°≤∠AOC≤180°),
∠DOE=180°-∠AOC=180°-(0°≤∠DOE≤180°).