题目内容

【题目】如图,已知点A是双曲线在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边作等腰RtABC,点C在第四象限,随着点A的运动,点C的位置也不断变化,但点C始终在第四象限,且双曲线始终经过点C,则k的值为_____

【答案】

【解析】

连结OC,作CD⊥x轴于D,AE⊥x轴于E,设A点坐标为(a,),利用反比例函数的性质得到点A与点B关于原点对称,则OA=OB,再根据等腰直角三角形的性质得OC=OA,OC⊥OA,然后利用等角的余角相等可得到∠DCO=∠AOE,则根据“AAS”可判断△COD≌△OAE,所以OD=AE=,CD=OE=a,于是C点坐标为(,a),最后根据反比例函数图象上点的坐标特征确定C点所在的函数图象解析式.

解:

连结OC,作CD⊥x轴于D,AE⊥x轴于E,如图,

A点坐标为(a,),

∵A点、B点是正比例函数图象与双曲线y=的交点,

∴点A与点B关于原点对称,

∴OA=OB

∵△ABC为等腰直角三角形,

∴OC=OA,OC⊥OA,

∴∠DOC+∠AOE=90°,

∵∠DOC+∠DCO=90°,

∴∠DCO=∠AOE,

在△COD和△OAE中,

∴△COD≌△OAE(AAS),

∴OD=AE=,CD=OE=a,

∴C点坐标为(,-a),

∵-a=-2,

∴点C在反比例函数y=-图象上.

故答案为-2.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网