题目内容

【题目】如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.

(1)求证:PA是⊙O的切线;
(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AGAB=12,求AC的长;

(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin∠ACE的值.

【答案】
(1)

解:证明:连接CD,

∵AD是⊙O的直径,

∴∠ACD=90°,

∴∠CAD+∠ADC=90°,

又∵∠PAC=∠PBA,∠ADC=∠PBA,

∴∠PAC=∠ADC,

∴∠CAD+∠PAC=90°,

∴PA⊥OA,而AD是⊙O的直径,

∴PA是⊙O的切线


(2)

解:由(1)知,PA⊥AD,又∵CF⊥AD,∴CF∥PA,

∴∠GCA=∠PAC,又∵∠PAC=∠PBA,

∴∠GCA=∠PBA,而∠CAG=∠BAC,

∴△CAG∽△BAC,

=

即AC2=AGAB,

∵AGAB=12,

∴AC2=12,

∴AC=2


(3)

解:设AF=x,∵AF:FD=1:2,∴FD=2x,

∴AD=AF+FD=3x,

在Rt△ACD中,∵CF⊥AD,∴AC2=AFAD,

即3x2=12,

解得;x=2,

∴AF=2,AD=6,∴⊙O半径为3,

在Rt△AFG中,∵AF=2,GF=1,

根据勾股定理得:AG= = =

由(2)知,AGAB=12,

∴AB= =

连接BD,

∵AD是⊙O的直径,

∴∠ABD=90°,

在Rt△ABD中,∵sin∠ADB= ,AD=6,

∴sin∠ADB=

∵∠ACE=∠ACB=∠ADB,

∴sin∠ACE=


【解析】(1)根据圆周角定理得出∠ACD=90°以及利用∠PAC=∠PBA得出∠CAD+∠PAC=90°进而得出答案;(2)首先得出△CAG∽△BAC,进而得出AC2=AGAB,求出AC即可;(3)先求出AF的长,根据勾股定理得:AG= ,即可得出sin∠ADB= ,利用∠ACE=∠ACB=∠ADB,求出即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网