题目内容
【题目】如图,矩形ABCD中,∠ADB=23°,E是AD上一点.将矩形沿CE折叠,点D的对应点F恰好落在BC上,CE交BD于H,连接HF,则∠BHF=__.
【答案】44°
【解析】
由折叠可得∠CFH=∠CDH=67°,由平行线的性质可得∠DBC=∠ADB=23°,再根据∠CFH是△BFH的外角,即可得出∠BHF=∠CFH-∠CBD=44°.
解:
由题可得,∠CDH=∠CDE-∠HDE=90°-23°=67°,
∵矩形沿CE折叠,点D的对应点F恰好落在BC上,
∴∠CFH=∠CDH=67°,
∵AD∥BC,
∴∠DBC=∠ADB=23°,
∵∠CFH是△BFH的外角,
∴∠BHF=∠CFH-∠CBD=67°-23°=44°,
故答案为:44°.
【题目】某水果超市为了吸引顾客来店购物,设立了一个如图所示的可以自由转动的转盘,开展有奖购物活动.顾客购买商品满200元就能获得一次转动转盘的机会,当转盘停止时,指针落在“一袋苹果”的区域就可以获得“一袋苹果”的奖品;指针落在“一盒樱桃”的区域就可以获得“一盒樱桃”的奖品.下表是该活动的一组统计数据:
转动转盘的次数n | 100 | 150 | 200 | 500 | 800 | 1000 |
落在“一袋苹果”区域的次数m | 68 | 108 | 140 | 355 | 560 | 690 |
落在“一袋苹果”区域的频率 | 0.68 | 0.72 | 0.70 | 0.71 | 0.70 | 0.69 |
下列说法不正确的是( )
A. 当n很大时,估计指针落在“一袋苹果”区域的频率大约是0.70
B. 假如你去转动转盘一次,获得“一袋苹果”的概率大约是0.70
C. 如果转动转盘2000次,指针落在“一盒樱桃”区域的次数大约有600次
D. 转动转盘10次,一定有3次获得“一盒樱桃”
【题目】如图,在△ABC中,AB=4.41cm,BC=8.83cm,P是BC上一动点,连接AP,设P,C两点间的距离为xcm,P,A两点间的距离为ycm.(当点P与点C重合时,x的值为0)小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如表:
x/cm | 0 | 0.43 | 1.00 | 1.50 | 1.85 | 2.50 | 3.60 | 4.00 | 4.30 | 5.00 | 5.50 | 6.00 | 6.62 | 7.50 | 8.00 | 8.83 |
y/cm | 7.65 | 7.28 | 6.80 | 6.39 | 6.11 | 5.62 | 4.87 |
| 4.47 | 4.15 | 3.99 | 3.87 | 3.82 | 3.92 | 4.06 | 4.41 |
(说明:补全表格时相关数值保留一位小数)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:当PA=PC时,PC的长度约为 cm.(结果保留一位小数)