题目内容

已知直线y=2x+4与x轴、y轴的交点分别为A、B,y轴上点C的坐标为(0,2),在x轴上找一点P,使得以P、O、C为顶点的三角形与△AOB相似,则点P的坐标为                       
(-4,0)、(-1,0)、(1,0)、(4,0)

试题分析:A、B两点的坐标容易根据直线的解析式求出,所以OA、OB的长度也可以求出,而C的坐标已知,所以OC=2,而以P、O、C为顶点的三角形与△AOB相似有两种情况,其中OC可以和OA对应,也可以和OB对应,利用相似三角形的对应边成比例就可以求出OP的长度,也就求出了P的坐标.
  
∵直线y=2x+4,
∴当x=0时,y=4;
当y=0时,x=-2.
∴A(-2,0),B(0,4),
∴OA=2,OB=4,
∵C的坐标为(0,2),
∴OC=2,
若以P、O、C为顶点的三角形与△AOB相似,
那么有两种情况:
①OC和OA对应,那么OP和OB对应,
∵OA=OC=2,
∴OP=OB=4,
∴P的坐标为(4,0)或(-4,0);
②OC和OB对应,那么OP和OA对应,

∴OP=1,
∴P的坐标为(1,0)或(-1,0)
因此P的坐标为(-4,0)、(-1,0)、(1,0)、(4,0).
点评:此类问题难度较大,在中考中比较常见,一般在压轴题中出现,需特别注意.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网