题目内容

【题目】如图,直线ABCD相交于点OOE平分∠BOD

1∠AOC=70°∠DOF=90°,求∠EOF的度数;

2OF平分∠COE∠BOF=15°,若设∠AOE=x°

用含x的代数式表示∠EOF;

∠AOC的度数.

【答案】(1)55°;(2)①FOE=x;②100°.

【解析】试题分析:(1)、根据对顶角的性质得出∠BOD的度数,根据直角和角平分线的性质求出∠BOF和∠BOE的度数,从而根据∠EOF=∠BOF+∠BOD得出答案;(2)、根据角平分线的性质得出∠BOE=∠DOE,根据平角的性质得出∠COE=∠AOE,最后根据角平分线的性质得出∠FOE的度数;根据题意得出∠BOE= -15°,根据∠BOE+∠AOE=180°求出x的值,最后根据∠AOC=2∠BOE得出答案.

试题解析:解:(1)由对顶角相等可知:∠BOD=∠AOC=70°,

∵∠FOB=∠DOF﹣∠BOD,∴∠FOB=90°﹣70°=20°,

∵OE平分∠BOD,∴∠BOE=BOD=×70°=35°,

∴∠EOF=∠FOB+∠BOE=35°+20°=55°,

(2)①∵OE平分∠BOD,

∴∠BOE=∠DOE,

∵∠BOE+∠AOE=180°,∠COE+∠DOE=180°,

∴∠COE=∠AOE=x,

∵OF平分∠COE, ∴∠FOE=x;

∵∠BOE=FOE﹣FOB,∴∠BOE=x﹣15°,

∵∠BOE+AOE=180°,x ﹣15°+x=180°,解得:x=130°,

∴∠AOC=2∠BOE=2×180°﹣130°=100°

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网