题目内容

【题目】O为直线AB上一点,过点O作射线OC,使∠BOC=65°将一直角三角形的直角三角板的直角顶点放在点O.

1)如图1,将三角板MON的一边ON与射线OB重合,则∠MOC=___________

2)如图2,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;

3)将三角板MON绕点O逆时针旋转至图3时,∠NOC=AOM,求∠NOB的度数.

【答案】125°225°370°

【解析】试题分析:(1)根据∠MON和∠BOC的度数可以得到∠MON的度数;

2)根据角平分线的性质,由∠BOC=65°,可以求得∠BOM的度数,然后由∠NOM-90°,可得∠BON的度数,从而得解;

3)由∠BOC=65°NOM=90°NOC=AOM,从而可求得∠NOC的度数,然后由∠BOC=65°,从而得解.

试题解析:1MON=90BOC=65°

MOC=MON-BOC=90°-65°=25°

2∠BOC=65°,OC平分∠MOB

MOB=2BOC=130°

BON=MOB-MON=130°-90°=40°

CON=COB-BON=65°-40°=25°

3NOC=AOM AOM=4NOC BOC=65°

AOC=AOB-BOC=180°-65°=115°

MON=90°

AOM+NOC=AOC-MON=115°-90°=25°

4NOC+NOC=25°

NOC=5°

NOB=NOC+BOC=70°

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网